Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule.

نویسندگان

  • Zachary H Aitken
  • Shi Luo
  • Stephanie N Reynolds
  • Christian Thaulow
  • Julia R Greer
چکیده

We conducted in situ three-point bending experiments on beams with roughly square cross-sections, which we fabricated from the frustule of Coscinodiscus sp. We observe failure by brittle fracture at an average stress of 1.1 GPa. Analysis of crack propagation and shell morphology reveals a differentiation in the function of the frustule layers with the basal layer pores, which deflect crack propagation. We calculated the relative density of the frustule to be ∼30% and show that at this density the frustule has the highest strength-to-density ratio of 1,702 kN⋅m/kg, a significant departure from all reported biologic materials. We also performed nanoindentation on both the single basal layer of the frustule as well as the girdle band and show that these components display similar mechanical properties that also agree well with bending tests. Transmission electron microscopy analysis reveals that the frustule is made almost entirely of amorphous silica with a nanocrystalline proximal layer. No flaws are observed within the frustule material down to 2 nm. Finite element simulations of the three-point bending experiments show that the basal layer carries most of the applied load whereas stresses within the cribrum and areolae layer are an order of magnitude lower. These results demonstrate the natural development of architecture in live organisms to simultaneously achieve light weight, strength, and exceptional structural integrity and may provide insight into evolutionary design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH effect on the susceptibility to parasitoid infection in the marine diatom Coscinodiscus spp. (Bacillariophyceae)

The pH on the frustule of individual cells of the marine centric diatoms Coscinodiscus granii and Coscinodiscus wailesii (Bacillariophyceae) was measured with pH microsensors in culture media with increasing pH values of 8.04, 8.14, and 8.22, respectively. In 85-96% of the C.granii cells the pH on the frustule was up to 0.4 units higher than that of the medium, reaching a maximum pH 8.95. Only ...

متن کامل

An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.

The wide variety of diatom frustule shapes and intricate architectures provide viable prototypes to guide the design and fabrication of nanodevices and nanostructured materials for applications ranging from sensors to nanotemplates. In this study, a combined experimental-simulation method was developed to probe the porous structure and mechanical behavior of two distinct marine diatom species, ...

متن کامل

Wavelength and orientation dependent capture of light by diatom frustule nanostructures

The ecological success of diatoms is emphasized by regular blooms of many different species in all aquatic systems, but the reason behind their success is not fully understood. A special feature of the diatom cell is the frustule, a nano-patterned cell encasement made of amorphous biosilica. The optical properties of a cleaned single valve (one half of a frustule) from the diatom Coscinodiscus ...

متن کامل

Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology

The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surf...

متن کامل

Fideliacyclus wombatiensis gen. et sp. nov. ndash; a Paleocene non-marine centric diatom from northern Canada with complex frustule architecture

Fideliacyclus wombatiensis gen. et sp. nov. – a Paleocene non-marine centric diatom from northern Canada with complex frustule architecture Peter A. Siver, Alexander P. Wolfe & Mark B. Edlund To cite this article: Peter A. Siver, Alexander P. Wolfe & Mark B. Edlund (2016): Fideliacyclus wombatiensis gen. et sp. nov. – a Paleocene non-marine centric diatom from northern Canada with complex frust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 8  شماره 

صفحات  -

تاریخ انتشار 2016